Pseudomorphic growth of organic semiconductor thin films driven by incommensurate epitaxy
نویسندگان
چکیده
منابع مشابه
Epitaxial Mn-doped ZnO diluted magnetic semiconductor thin films grown by plasma-assisted molecular-beam epitaxy
A growthwindow for theMn effusion cell temperature (TMn) is demonstrated for epitaxialMn-doped ZnO (MnZnO) thin films grown on sapphire substrates using molecular-beam epitaxy. Within the growth window, the films are ferromagnetic with the largest saturated magnetization occurring at TMn1⁄4700 1C. The Curie temperature of these MnZnO diluted magnetic semiconductor thin films is above roomtemper...
متن کاملCrystallization in organic semiconductor thin films: a diffuse-interface approach.
The crystallization of organic semiconductor thin films from an amorphous phase often results in a broad range of microstructures and molecular arrangements that in turn critically impact the electronic properties of the film. Here we present a diffuse-interface model of thin film crystallization that accounts for out-of-plane tilting of the kinetically favored crystalline orientation as well a...
متن کاملCharge trapping in mixed organic donor-acceptor semiconductor thin films.
A pump-probe method, whereby trapped charges are optically induced to contribute to the total photocurrent, is applied to quantitatively determine the trap density in small-molecule organic semiconductor thin films and donor-acceptor blends used in organic solar cells. The trapped charge density is correlated to the cell performance, and the dependence of charge trapping on the presence of nano...
متن کاملHigh-pressure Raman scattering of CdO thin films grown by metal-organic vapor phase epitaxy
متن کامل
High-mobility thin InSb films grown by molecular beam epitaxy
The problem of preparing high-mobility thin InSb films is revisited for magnetoresistive and spintronic sensor applications. We introduce a growth process that significantly improves the electrical properties of thin unintentionally doped InSb layers ~60–300 nm! epitaxially grown on GaAs~100! substrates by reducing the density of dislocations within the interfacial layer. The epilayer propertie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Physics Letters
سال: 2009
ISSN: 0003-6951,1077-3118
DOI: 10.1063/1.3081413